

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 8301–8305

The first examples of cyclizations of a glycal with enamines leading to oxa-aza bicyclononene scaffolds

J. S. Yadav,^{a,*} B. V. Subba Reddy,^a M. Srinivas,^a Ch. Divyavani,^a A. C. Kunwar^b and Ch. Madavi^b

^a Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 007, India ^bNuclear Magnetic Resonance, Indian Institute of Chemical Technology, Hyderabad 500 007, India

> Received 9 August 2007; revised 13 September 2007; accepted 20 September 2007 Available online 26 September 2007

Abstract—Glycals undergo smooth coupling with β -enaminoketones and β -enaminoesters generated in situ from 1,3-dicarbonyl compounds and arylamines in the presence of 10 mol % of $InCl₃$ in refluxing dichloroethane to produce oxa-aza bicyclononene scaffolds in excellent yields with high selectivity. The use of $InCl₃$ makes this protocol simple, convenient and easy to scale-up. $© 2007$ Published by Elsevier Ltd.

The ready availability of a wide range of carbohydrates in nature and their multi-chiral architecture, coupled with their well-defined stereochemistry, make them attractive starting materials in organic synthesis.[1,2](#page-4-0) In particular, glycals (1,5-anhydro-hex-1-enitols), that is, 1,2-unsaturated derivatives of pentoses and hexoses are among the most versatile chiral building blocks.^{[3](#page-4-0)} They are ambident electrophiles capable of reacting with various nucleophiles under the influence of acid catalysts or oxidants to produce 2,3-unsaturated glycosides.[4](#page-4-0) They are very useful precursors in oligosaccharide synthesis.[5](#page-4-0) Recently, multicomponent one-pot synthesis has received attention because of its wide range of applications in pharmaceutical chemistry for production of structural scaffolds and combinatorial libraries for drug discovery.^{[6](#page-4-0)}

In this Letter, we report a versatile approach via a threecomponent coupling (3CC) involving the condensation of glycals, 1,3-dicarbonyl compounds and arylamines. The 3CC reaction was carried out in the presence of an acid catalyst, usually 10 mol $\%$ of indium(III) chloride. This robust approach allows for the preparation of a diverse range of products and suited our requirements in continuation of a synthetic program aimed at

the generation of combinatorial libraries for drug discovery. Initially, we studied the three-component coupling of tri-O-acetyl-D-glucal, acetylacetone, and aniline using 10 mol % indium(III) chloride as a novel glycosyl activator. The unusual bicyclic adduct 4a was isolated in 93% yield with high stereoselectivity ([Scheme 1\)](#page-1-0).

Product 4a was characterized thoroughly with the help of various NMR experiments including extensive ¹H decoupling, 2-D nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single-quantum correlation spectroscopy (HSQC), and heteronuclear multiple bond correlation spectroscopy (HMBC). The NMR data suggest that the molecular structure of 4a consists of a [2.3.3]bicyclononene-like structure. The location of the methylene group in the bridge of the bicyclononene-like structure was confirmed by small couplings with the bridgehead protons H1 and H3 ($j_{\text{H1-H2}_{\text{(pro-}S)}}$ = 3.0 Hz, $J_{\text{H1-H2}_{\text{(pro-}R)}} = 2.2 \text{ Hz}, \quad J_{\text{H2}_{\text{(pro-}S)}} = 3.0 \text{ Hz},$ and $J_{\text{H2}_{\text{(pro-}S)}\text{-H3}} = 4.3 \text{ Hz}$; [Fig. 1\)](#page-1-0). The two six-membered rings of the bicyclononene moiety differ in their conformations. For the pyranose ring, $J_{H4-H5} = 10.3 \text{ Hz}$ and the NOESY cross peak $\text{H2}_{\text{(pro-s)}}/\text{H4}$ supports the 4 C chair form NOE correlations H5/H and $\text{H1}/\text{H}$ ⁴C₁chair form. NOE correlations, $H5/H_{ortho}$ and $H1/$ H_{ortho} further confirm that the N-Ph group is on the same side as the ring oxygen, while the location of the methyl group adjacent to the ring nitrogen was amply supported by NOE, $C11/H_{ortho}$. Additionally, HMBC correlations, H4/C13, H3/C12 and H1/C12 were in complete agreement with the proposed structure.

Keywords: Glycals; 1,3-Dicarbonyls; Indium compounds; Oxa-azaheterobicycles.

^{*} Corresponding author. Tel.: +91 40 27193030; fax: +91 40 27160512; e-mail: yadavpub@iict.res.in

Scheme 1.

Figure 1. Characteristic NOE interactions and the energy-minimized structure of 4a.

Interestingly, the structure differs from that expected from our earlier studies on glycals.[7](#page-4-0) Further, the energy-minimized structure of 4a was obtained from molecular mechanics calculations and is shown in Figure 1. [8](#page-4-0)

This unexpected result prompted us to apply this process to various glycals, 1,3-dicarbonyl compounds, and arylamines. Substituted arylamines such as p-toludine, p-anisidine, p-chloroaniline, p-fluoroaniline, 3,4-methylenedioxyaniline, o-toludine, and 1-naphthylamine participated in this reaction to produce the corresponding heterobicycles in good yields (Table 1). Other glucal derivatives including 3,4,6-tri-O-methyl- and 3,4,6-tri-O-allyl-D-glucal reacted efficiently with enamines generated in situ from 1,3-diones and arylamines to produce cyclic adducts (Table 1). Besides acetylacetone, methyl

Table 1. InCl₃-catalyzed three-component coupling of glycals, 1,3-diones and aryl amines

Entry	Glycal	Amine	1,3-Dione	Product ^a	Reaction time (h)	Yield \mathbf{b} (%)
a	O AcO^- AcO OAc	NH ₂	Pentane-2,4-dione	AcO AcO ['] CH ₃ CH ₃ O	$5.0\,$	93
$\mathbf b$	Ω AcO AcO ŌА _с	NH ₂ CH ₃	Pentane-2,4-dione	CH ₃ $AcO-$ ΙN ACO' CH ₃ CH ₃ O	$6.0\,$	85
$\mathbf c$	AcO [®] AcO OAc	NH ₂ OMe	Pentane-2,4-dione	OMe ACO^{\sim} 'N ACO CH ₃ CH_3 O	$5.0\,$	91

Table 1 (continued)

Lable 1 (<i>continuea</i>)						
Entry	Glycal	Amine	1,3-Dione	Product ^a	Reaction time (h)	Yield \mathbf{b} (%)
$\rm d$	AcO AcO O _{Ac}	NH ₂ OMe	Methyl acetoacetate	OMe AcO N AcO CH ₃ OMe \circ	$6.0\,$	85
$\mathbf e$	AcO AcO OAc	NH ₂ Cl	Methyl acetoacetate	C _l AcO AcO CH ₃ OMe \circ	$5.5\,$	83
$\mathbf f$	AcO AcO OAc	NH ₂	Pentane-2,4-dione	AcO AcO CH ₃ CH ₃ O	5.5	85
g	AcO AcO OAc	NH ₂ O	Pentane-2,4-dione	AcO N AcO ['] CH ₃ CH ₃ \circ	5.0	$\bf 87$
$\,$ h	AcO AcO OAc	NH ₂	Pentane-2,4-dione	AcO N AcO CH_3 CH ₃ \circ	$6.0\,$	$75\,$
\mathbf{i}	MeO MeO OMe	NH ₂	Pentane-2,4-dione	MeO ⁻ N MeO CH ₃ $\check{C}H_3$ O	$6.0\,$	85
j	MeO MeO OMe	NH ₂ Cl	Pentane-2,4-dione	CI MeO [®] MeO CH, CH,	$6.0\,$	$\bf 87$
$\mathbf k$	MeO MeO ОМе	NH ₂	Pentane-2,4-dione	MeO MeO CH. CH_3 O	6.0	$82\,$
$\mathbf{1}$		NH ₂	Pentane-2,4-dione	O CH ₃ CH^3	5.5	$90\,$ (continued on next page)

Table 1 (continued)

^a All products were characterized by NMR, IR and mass spectroscopy.

^b Yield refers to pure products after chromatography.

Scheme 2.

acetoacetate also participated in this reaction. A plausible mechanism for the formation of products 4 is depicted in Scheme 2.

This method is a highly stereoselective, one-pot synthesis of unusual bicyclic heterocycles under mild conditions. The efficacy of various Lewis acids such as InCl₃, BiCl₃, CeCl₃ $·7H₂O$, YCl₃, and YbCl₃ was tested. Indium trichloride was found to be the most effective catalyst in terms of conversion and selectivity. For instance, treatment of tri-O-acetyl-D-glucal with acetylacetone and aniline in the presence of 10 mol $\%$ InCl₃, 10 mol % BiCl₃, and 10 mol % CeCl₃ $7H_2O$ for 5 h afforded 4a in yields of 93%, 78%, and 65%, respectively. Alternatively, 10 mol % of InBr₃ was found to be equally effective for this conversion. However, in the absence of either $InCl₃$ or $InBr₃$, the reaction did not proceed even after an extended time. Various triflates

were also screened including $In(OTf)_{3}$, Sc $(OTf)_{3}$, $Bi(OTf)_{3}$, $Yb(OTf)_{3}$, $Dy(OTf)_{3}$, and $Sm(OTf)_{3}$ but none of them gave satisfactory yields. Simple cyclic enol ethers such as 3,4-dihydro-2H-pyran and 2,3-dihydrofuran afforded the corresponding tetrahydroquinoline derivatives under similar reaction conditions.⁹ Furthermore, the reaction also proceeded with protic acids, specifically montmorillonite KSF or $PMA/SiO₂$, at 80 °C in 1,2-dichloroethane to yield the same products.

In conclusion, we have disclosed a three-component, one-pot synthesis of novel carbohydrate derivatives, oxa-aza-heterobicycles, from glycals, 1,3-dicarbonyls, and aryl amines using a catalytic amount of indium trichloride under mild conditions[.10](#page-4-0) This is an entirely new approach to functionalize glycals with 1,3-dicarbonyl compounds and arylamines, leading to oxa-aza bicyclononene scaffolds.

Acknowledgments

M.S., Ch.D. thank CSIR for the award of fellowships and also thank DST for the financial assistance under the J. C. Bose fellowship scheme.

References and notes

- 1. Hanessain, S. Total Synthesis of Natural Products: The 'Chiron' Approach. In Organic Chemistry Series; Pergamon: Oxford, 1983; Vol. 3; Fraser-Reid, B.; Anderson, R. C. Fort. Chem. Org. Nat. 1980, 39, 1.
- 2. Postema, M. H. D. Tetrahedron 1992, 48, 8545– 8599.
- 3. Collins, P. M.; Ferrier, R. J. Monosaccharides, Their Chemistry and Their Roles in Natural Products; John Wiley: Chichester, UK, 1995; p 317.
- 4. (a) Ferrier, R. J.; Prasad, N. J. J. Chem. Soc., Chem. Commun. 1969, 570–571; (b) Ferrier, R. J. Adv. Carbohydr. Chem. Biochem. 1969, 24, 199–266.
- 5. (a) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. 1996, 35, 1380–1419; (b) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. 1996, 108, 1482–1522; (c) Nicolaou, K. C.; Mitchell, H. J. Angew. Chem., Int. Ed. 2001, 40, 1576–1624; (d) Danishefsky, S. J.; Allen, J. R. Angew. Chem., Int. Ed. 2000, 39, 836–863.
- 6. Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley: Weinheim, 2005.
- 7. Yadav, J. S.; Reddy, B. V. S.; Rao, K. V.; Saritha Raj, K.; Prasad, A. R.; Kiran Kumar, S.; Kunwar, A. C.; Jayaprakash, P.; Jagannath, B. Angew. Chem., Int. Ed. 2003, 42, 5198–5201.
- 8. (a) Goto, H.; Osawa, E. J. J. Chem. Soc., Perkin Trans. 2 1993, 187–198; (b) P.C. MODEL, Serena Software Box 3076, Bloomington, IN, USA.
- 9. Yadav, J. S.; Reddy, B. V. S.; Sadasiv, K.; Reddy, P. S. R. Tetrahedron Lett. 2002, 43, 3853–3856.
- 10. Experimental procedure: A mixture of glucal triacetate (272 mg, 1 mmol), aniline (103 mg, 1.1 mmol), pentane-2,4-dione (110 mg, 1.1 mmol), and $InCl₃$ (0.1 mmol) in dichloroethane (10 mL) was heated at 80 °C for the appropriate time ([Table 1](#page-1-0)). After completion of the reaction, as indicated by TLC, the reaction mixture was extracted with ethyl acetate $(2 \times 10 \text{ mL})$. The combined organic extracts were washed with water followed by brine and dried over anhydrous $Na₂SO₄$. Removal of the solvent followed by purification on a silica gel column using a mixture of ethyl acetate: n -hexane (3:7) afforded pure product.

Spectral data for selected products: Compound 4a: Colorless solid, mp 122-123 °C. IR (KBr): v_{max} 2924, 2832, 1731, 1705, 1643, 1530, 1490, 1414, 1385, 1291, 1215, 1120, 1093, 1066, 1018, 981, 831, 721, 599, 553, 507 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.40 (t, J = 7.7 Hz, 2H, meta), 7.32 (t, $J = 7.1$ Hz, 1H, para), 7.19 (d, $J = 7.9$ Hz, 2H, ortho), 5.01 (m, 1H, H1), 4.92 (dd, $J = 4.3$, 10.3 Hz, 1H, H4), 4.17 (dd, $J = 5.6$, 11.9 Hz, 1H, H6), 4.07 (dd, $J = 2.5$, 11.9 Hz, 1H, H6'), 3.83 (ddd, $J = 2.5$, 5.6, 10.4 Hz, 1H, H5), 3.59 (m, 1H, H3), 2.27 (dt, $J = 3.0$, 12.8 Hz, 1H, H2(pro-S)), 2.22 (s, 3H, 15-Me), 2.15 (s, 3H, 11-Me), 2.06 (s, $3H$, 8-M e), 2.04 (s, $3H$, 10-M e), 1.92 (ddd, $J = 2.2, 4.3$, 12.8 Hz, $\overline{1H}$, $\overline{H2}_{(pro-R)}$). ¹³C NMR (proton decoupled, 150 MHz, CDCl₃): $\delta = 197.3$ (C14), 170.8 (C7), 170.3 (C9), 154.3 (C12), 143.4 (C16), 129.5 (meta), 128.2 (ortho), 127.8 (para), 108.1 (C13), 82.4 (C1), 70.9 (C4), 68.4 (C5), 63.2 (C6), 30.5 (C3), 30.1 (C15), 28.4 (C2), 21.1 (C10), 20.45 (C11), 20.0 (C8). LCMSD: m/z : (M⁺+H) 388. HRMS calcd for $C_{21}H_{26}NO_6$ (M⁺+H): 388.1760, found, 388.1756.

Compound 4j: Pale yellow liquid, IR (KBr): v_{max} 2929, 2827, 1701, 1640, 1530, 1490, 1383, 1293, 1213, 1120, 1093, 1065, 1013, 989, 831, 722, 599, 570 cm⁻¹. ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3): \delta$ 7.38 (d, $J = 8.6 \text{ Hz}, 2\text{H}$), 7.05 (d, $J = 8.6$ Hz, 2H), 4.95 (m, 1H), 3.52 (dd, $J = 4.3$, 10.3 Hz, 1H), 3.49 (dd, $J = 5.6$, 11.9 Hz, 1H), 3.45 (dd, $J = 2.5$, 11.9 Hz, 1H), 3.40 (ddd, $J = 2.5, 5.6, 10.4$ Hz, 1H), 3.38 (m, 1H), 3.41 (s, 3H), 3.35 (s, 3H), 2.21 (s, 3H), 2.09 (dt, $J = 3.0, 12.8$ Hz, 1H), 2.01 (s, 3H), 1.80 (ddd, $J = 2.2, 4.3$, 12.8 Hz, 1H).¹³C NMR (proton decoupled, 75 MHz, CDCl3): d 198.2, 152.5, 142.2, 133.0, 129.6, 129.5, 109.7, 82.5, 78.5, 71.5, 59.2, 58.3, 31.8, 30.3, 29.6, 22.6, and 20.2. ESIMS: m/z : $(M^+ + H)$ 366. HRMS calcd for $C_{19}H_{25}NO_4Cl$ (M⁺+H): 366.1472, found, 366.1476. Compound 4n: Pale yellow liquid, IR (KBr): v_{max} 2925, 2854, 1735, 1641, 1508, 1460, 1378, 1292, 1212, 1124, 1032, 993, 925, 831, 757, 545 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 6.94 (d, J = 9.0 Hz, 2H), 6.77 (d, J = 9.0 Hz, 2H), 5.87–5.72 (m, 2H), 5.16 (d, $J = 16.6$ Hz, 2H), 5.07 (d, $J = 11.3$ Hz, 2H), 5.02 (t, $J = 6.0$ Hz, 1H), 4.82 (m, 1H), 4.06 (dd, $J = 6.0$, 12.8 Hz, 1H), 3.95 (dd, $J = 3.0$, 12.8 Hz, 1H), 3.92–3.85 (m, 2H), 3.72 (s, 3H), 3.5 (m, 4H), 2.19 (s, 3H), 2.10 (dt, $J = 3.0$, 12.8 Hz, 1H), 2.01 (s, 3H), 1.80 (ddd, $J = 2.2$, 4.3, 12.8 Hz, 1H). ¹³C NMR (proton decoupled, 75 MHz, CDCl₃): δ 198.0, 158.5, 153.7, 136.5, 134.7, 134.4, 129.4, 117.3, 116.9, 114.5, 136.5, 134.7, 134.4, 129.4, 117.3, 108.8, 82.7, 76.1, 72.4, 71.3, 71.2, 69.0, 55.4, 30.5, 30.4, 29.6, 29.3, 28.6, 20.0. ESIMS m/z : $(M^+ + H)$ 414. HRMS calcd for $C_{24}H_{32}NO_5$ (M⁺+H): 414.2280, found, 414.2277.